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Visualization

Many real UDA problems: 
The data are messy and it’s not 

obvious what the “correct” 
labels/answers look like, and 

“correct” is ambiguous!

This is largely why I am covering “supervised” methods (require labels) 
after “unsupervised” methods (don’t require labels)

Important: 
Handwritten digit demo was a 
toy example where we know 
which images correspond to 

digits 0, 1, … 9

Top right image source: https://bost.ocks.org/mike/miserables/

is a way of debugging data analysis!

Example: Trying to 
understand how people 

interact in a social network



Dimensionality Reduction for Visualization

• There are many methods (I've posted a link on the course 
webpage to a scikit-learn Swiss roll example using ~10 
methods)

• PCA and t-SNE are good candidates for methods to try first

• PCA is very well-understood; the new axes can be interpreted

• If you have good reason to believe that only certain features 
matter, of course you could restrict your analysis to those!

• Nonlinear dimensionality reduction: new axes may not really be 
all that interpretable (you can scale axes, shift all points, etc)



Introduction to Clustering

Similarity functions, k-means, Gaussian mixture models
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Image source: http://static3.businessinsider.com/image/58f900e37522cacd008b4ee9/scott-
galloway-netflix-could-be-the-next-300-billion-company.jpg

Suppose Netflix asks you how to go about 
understanding what kind of TV show it should 

produce next. How would you go about doing it?



We want to understand user tastes



Movie Recommendation Data

We can also scrape IMDb for a lot of semantic information  
(actresses, actors, genres, reviews, etc) about movies/TV shows
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When looking for structure, 
it's helpful to hypothesize 

what structure there might be



Movie Recommendation Data

Ratings matrix
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Simple hypothesis: There are clusters of users with similar taste

Similar

Different
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Dense part of Netflix Prize data

Is the Hypothesis on Users True?

There are blocks of similar users!
In fact there are blocks of similar items as well!



Defining SimilarityThe Art of 

• There usually is no “best” way to define similarity

Example: cosine similarity between users
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Defining SimilarityThe Art of 

�Yu , Yv �
�Yu��Yv�

Example: cosine similarity

• Also popular: define a distance first and then turn it into a 
similarity

Example: Euclidean distance ∥Yu − Yv∥

Turn into similarity with decaying exponential
exp(−γ∥Yu − Yv∥)

γ > 0where

• There usually is no “best” way to define similarity



Example: Time Series
How would you compute a distance between these?

T

Yu Yv

Only observe time steps 
between 0 and T



Example: Time Series

T

Yu Yv

How would you compute a distance between these?

Only observe time steps 
between 0 and T



Distance could be defined 
as the area of this purple 

shaded in region

Example: Time Series

T

YuYv

How would you compute a distance between these?

One solution: Align them first

In practice: for time series, very popular to use "dynamic time warping" 
to first align (it works kind of like how spell check does for words)



Similarity Diagnostics

• As you try different similarity functions, easy thing to check:

• Pick any data point

• Compute its similarity to all the other data points, and rank 
them in decreasing over from most similar to least similar

• Inspect the top most similar data points — do they seem 
reasonable?

If the most similar points are not interpretable, it's quite likely that 
your similarity function isn't very good  =(



Going from Similarities to Clusters

Generative models

There’s a whole zoo of clustering methods

Hierarchical clustering
Top-down: Start with everything in 1 

cluster and decide on how to 
recursively split

1. Pretend data 
generated by specific 

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its 

own cluster and decide on how to 
iteratively merge clusters

Two main categories we'll talk about:

3. Use fitted model to 
determine cluster assignments

We start here



We're going to start with 
perhaps the most famous of 

clustering methods
It won't yet be apparent what this method 

has to do with generative models



k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for 
where cluster centers are

Example: choose k of 
the points uniformly 

at random to be initial 
guesses for cluster 

centers
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k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for 
where cluster centers are

Example: choose k of 
the points uniformly 

at random to be initial 
guesses for cluster 

centers
(There are many 

ways to make the 
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Repeat until convergence: 



k-means
Final output: cluster centers, cluster assignment for every point

Remark: Very sensitive to 
choice of k and initial 

cluster centers

Suggested way to pick initial cluster centers: “k-means++” method

How to pick k?
• Basic check: 

If you have 
really, really 
tiny clusters  
⇒ decrease k

• More details later

(rough intuition: incrementally add centers; favor adding center far 
away from centers chosen so far)



When does k-means work well?

k-means is related to a more general model, which will help us 
understand k-means



Gaussian Mixture Model (GMM)

What random process could have generated these points?



Generative Process

Think of flipping a coin

Each flip doesn't depend on any of the previous flips

each outcome: heads or tails



Generative Process

Think of flipping a coin

Each flip doesn't depend on any of the previous flips

each outcome: 2D point

Okay, maybe it's bizarre to think of it as a coin…

If it helps, just think of it as you pushing a button and 
a random 2D point appears…



Gaussian Mixture Model (GMM)

We now discuss a way to generate points in this manner



Gaussian Mixture Model (GMM)

Image source: https://www.intechopen.com/source/html/17742/media/image25.png

Assume: points sampled independently from a probability distribution

Example of a 2D probability distribution

how probable 
point generated 

at (x, y) is

y
x

Red = more likely

Blue = less likely

This is the sum of two 2D 
Gaussian distributions!



Quick Reminder: 1D Gaussian

Image source: https://matthew-brett.github.io/teaching//smoothing_intro-3.hires.png

This is a 1D Gaussian distribution



2D Gaussian

Image source: https://i.stack.imgur.com/OIWce.png

This is a 2D Gaussian distribution



Gaussian Mixture Model (GMM)

Image source: https://www.intechopen.com/source/html/17742/media/image25.png

Assume: points sampled independently from a probability distribution

Example of a 2D probability distribution

how probable 
point generated 

at (x, y) is

y
x

Red = more likely

Blue = less likely

This is the sum of two 2D 
Gaussian distributions!

2D Gaussian distribution
2D Gaussian distribution

Key idea: Each Gaussian 
corresponds to a different cluster



Gaussian Mixture Model (GMM)

• For a fixed value k and dimension d, a GMM is the sum of k 
d-dimensional Gaussian distributions so that the overall 
probability distribution looks like k mountains

• Each mountain corresponds to a different cluster

• Different mountains can have different peak heights

• One missing thing we haven't discussed yet:  
different mountains can have different shapes

(We've been 
looking at d = 2)



2D Gaussian Shape
In 1D, you can have a skinny Gaussian or a wide Gaussian

In 2D, you can more generally have ellipse-shaped Gaussians

Less uncertainty More uncertainty

Image source: https://www.cs.colorado.edu/~mozer/Teaching/syllabi/ProbabilisticModels2013/
homework/assign5/a52dgauss.jpg

Top-down view of an example 2D Gaussian distribution

Ellipse enables 
encoding relationship 

between variables

Can't have arbitrary 
shapes



Gaussian Mixture Model (GMM)

• For a fixed value k and dimension d, a GMM is the sum of k 
d-dimensional Gaussian distributions so that the overall 
probability distribution looks like k mountains

• Each mountain corresponds to a different cluster

• Different mountains can have different peak heights

• Different mountains can have different ellipse shapes 
(captures "covariance" information)

(We've been 
looking at d = 2)



Example: 1D GMM with 2 Clusters

What do you think this looks like?

Cluster 1 Cluster 2

Probability of generating a 
point from cluster 1 = 0.5

Probability of generating a 
point from cluster 2 = 0.5

Gaussian mean = −5
Gaussian std dev = 1

Gaussian mean = 5
Gaussian std dev = 1
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Example: 1D GMM with 2 Clusters

Cluster 1 Cluster 2

Probability of generating a 
point from cluster 1 = 0.7

Probability of generating a 
point from cluster 2 = 0.3

Gaussian mean = −5
Gaussian std dev = 1

Gaussian mean = 5
Gaussian std dev = 1

How to generate 1D points from this GMM:
1. Flip biased coin (with probability of heads 0.7)
2. If heads: sample 1 point from Gaussian mean -5, std dev 1
    If tails: sample 1 point from Gaussian mean 5, std dev 1



Example: 1D GMM with 2 Clusters

Cluster 1 Cluster 2

Probability of generating a 
point from cluster 1 = 𝜋1

Probability of generating a 
point from cluster 2 = 𝜋2

Gaussian mean = 𝜇1

Gaussian std dev = 𝜎1

Gaussian mean = 𝜇2

Gaussian std dev = 𝜎2

How to generate 1D points from this GMM:
1. Flip biased coin (with probability of heads 𝜋1)
2. If heads: sample 1 point from Gaussian mean 𝜇1, std dev 𝜎1

    If tails: sample 1 point from Gaussian mean 𝜇2, std dev 𝜎2



Example: 1D GMM with k Clusters

Cluster 1 Cluster k

Probability of generating a 
point from cluster 1 = 𝜋1

Probability of generating a 
point from cluster k = 𝜋k

Gaussian mean = 𝜇1

Gaussian std dev = 𝜎1

Gaussian mean = 𝜇k
Gaussian std dev = 𝜎k

How to generate 1D points from this GMM:
1. Flip biased k-sided coin (the sides have probabilities 𝜋1, …, 𝜋k)
2. Let Z be the side that we got (it is some value 1, …, k)
3. Sample 1 point from Gaussian mean 𝜇Z, std dev 𝜎Z

…


