
Manifold Learning with t-SNE

Demo

Visualization

Many real UDA problems: 
The data are messy and it’s not

obvious what the “correct”
labels/answers look like, and

“correct” is ambiguous!

This is largely why I am covering “supervised” methods (require labels)
after “unsupervised” methods (don’t require labels)

Important: 
Handwritten digit demo was a
toy example where we know
which images correspond to

digits 0, 1, … 9

Top right image source: https://bost.ocks.org/mike/miserables/

is a way of debugging data analysis!

Example: Trying to
understand how people

interact in a social network

Dimensionality Reduction for Visualization

• There are many methods (I've posted a link on the course
webpage to a scikit-learn Swiss roll example using ~10
methods)

• PCA and t-SNE are good candidates for methods to try first

• PCA is very well-understood; the new axes can be interpreted

• If you have good reason to believe that only certain features
matter, of course you could restrict your analysis to those!

• Nonlinear dimensionality reduction: new axes may not really be
all that interpretable (you can scale axes, shift all points, etc)

Introduction to Clustering

Similarity functions, k-means, Gaussian mixture models

slides by
George Chen

Carnegie Mellon University
Spring 2018

Image source: http://static3.businessinsider.com/image/58f900e37522cacd008b4ee9/scott-
galloway-netflix-could-be-the-next-300-billion-company.jpg

Suppose Netflix asks you how to go about
understanding what kind of TV show it should

produce next. How would you go about doing it?

We want to understand user tastes

Movie Recommendation Data

We can also scrape IMDb for a lot of semantic information  
(actresses, actors, genres, reviews, etc) about movies/TV shows

Ratings matrix

For simplicity:
consider

single
snapshot in

time

User 1

User 2

User n

Item 1 Item 2 Item 3 Item 4 Item m

!""

? ?! !

? !

"?

! !

!

!

When looking for structure,
it's helpful to hypothesize

what structure there might be

Movie Recommendation Data

Ratings matrix

User 1

User 2

User n

Item 1 Item 2 Item 3 Item 4 Item m

!""

? ?! !

? !

"?

! !

!

!

Simple hypothesis: There are clusters of users with similar taste

Similar

Different

0 100 200 300 400 500

0

50

100

150

200

Users

Movies

black = user dislikes movie
white = user likes movie

Dense part of Netflix Prize data

Is the Hypothesis on Users True?

There are blocks of similar users!
In fact there are blocks of similar items as well!

Defining SimilarityThe Art of

• There usually is no “best” way to define similarity

Example: cosine similarity between users

!

"" "

!"User u

User v

? ?
? ?

?
?"

" !

"

+1 −1

+1 +1

Yu

Yv

�Yu , Yv �
�Yu��Yv�

= 0

Defining SimilarityThe Art of

�Yu , Yv �
�Yu��Yv�

Example: cosine similarity

• Also popular: define a distance first and then turn it into a
similarity

Example: Euclidean distance ∥Yu − Yv∥

Turn into similarity with decaying exponential
exp(−γ∥Yu − Yv∥)

γ > 0where

• There usually is no “best” way to define similarity

Example: Time Series
How would you compute a distance between these?

T

Yu Yv

Only observe time steps
between 0 and T

Example: Time Series

T

Yu Yv

How would you compute a distance between these?

Only observe time steps
between 0 and T

Distance could be defined
as the area of this purple

shaded in region

Example: Time Series

T

YuYv

How would you compute a distance between these?

One solution: Align them first

In practice: for time series, very popular to use "dynamic time warping"
to first align (it works kind of like how spell check does for words)

Similarity Diagnostics

• As you try different similarity functions, easy thing to check:

• Pick any data point

• Compute its similarity to all the other data points, and rank
them in decreasing over from most similar to least similar

• Inspect the top most similar data points — do they seem
reasonable?

If the most similar points are not interpretable, it's quite likely that
your similarity function isn't very good =(

Going from Similarities to Clusters

Generative models

There’s a whole zoo of clustering methods

Hierarchical clustering
Top-down: Start with everything in 1

cluster and decide on how to
recursively split

1. Pretend data
generated by specific

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its

own cluster and decide on how to
iteratively merge clusters

Two main categories we'll talk about:

3. Use fitted model to
determine cluster assignments

We start here

We're going to start with
perhaps the most famous of

clustering methods
It won't yet be apparent what this method

has to do with generative models

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Repeat

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)
Repeat

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)
Repeat

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Repeat

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)
Repeat

k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for
where cluster centers are

Example: choose k of
the points uniformly

at random to be initial
guesses for cluster

centers
(There are many

ways to make the
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Repeat until convergence:

k-means
Final output: cluster centers, cluster assignment for every point

Remark: Very sensitive to
choice of k and initial

cluster centers

Suggested way to pick initial cluster centers: “k-means++” method

How to pick k?
• Basic check: 

If you have
really, really
tiny clusters  
⇒ decrease k

• More details later

(rough intuition: incrementally add centers; favor adding center far
away from centers chosen so far)

When does k-means work well?

k-means is related to a more general model, which will help us
understand k-means

Gaussian Mixture Model (GMM)

What random process could have generated these points?

Generative Process

Think of flipping a coin

Each flip doesn't depend on any of the previous flips

each outcome: heads or tails

Generative Process

Think of flipping a coin

Each flip doesn't depend on any of the previous flips

each outcome: 2D point

Okay, maybe it's bizarre to think of it as a coin…

If it helps, just think of it as you pushing a button and
a random 2D point appears…

Gaussian Mixture Model (GMM)

We now discuss a way to generate points in this manner

Gaussian Mixture Model (GMM)

Image source: https://www.intechopen.com/source/html/17742/media/image25.png

Assume: points sampled independently from a probability distribution

Example of a 2D probability distribution

how probable
point generated

at (x, y) is

y
x

Red = more likely

Blue = less likely

This is the sum of two 2D
Gaussian distributions!

Quick Reminder: 1D Gaussian

Image source: https://matthew-brett.github.io/teaching//smoothing_intro-3.hires.png

This is a 1D Gaussian distribution

2D Gaussian

Image source: https://i.stack.imgur.com/OIWce.png

This is a 2D Gaussian distribution

Gaussian Mixture Model (GMM)

Image source: https://www.intechopen.com/source/html/17742/media/image25.png

Assume: points sampled independently from a probability distribution

Example of a 2D probability distribution

how probable
point generated

at (x, y) is

y
x

Red = more likely

Blue = less likely

This is the sum of two 2D
Gaussian distributions!

2D Gaussian distribution
2D Gaussian distribution

Key idea: Each Gaussian
corresponds to a different cluster

Gaussian Mixture Model (GMM)

• For a fixed value k and dimension d, a GMM is the sum of k 
d-dimensional Gaussian distributions so that the overall
probability distribution looks like k mountains

• Each mountain corresponds to a different cluster

• Different mountains can have different peak heights

• One missing thing we haven't discussed yet:  
different mountains can have different shapes

(We've been
looking at d = 2)

2D Gaussian Shape
In 1D, you can have a skinny Gaussian or a wide Gaussian

In 2D, you can more generally have ellipse-shaped Gaussians

Less uncertainty More uncertainty

Image source: https://www.cs.colorado.edu/~mozer/Teaching/syllabi/ProbabilisticModels2013/
homework/assign5/a52dgauss.jpg

Top-down view of an example 2D Gaussian distribution

Ellipse enables
encoding relationship

between variables

Can't have arbitrary
shapes

Gaussian Mixture Model (GMM)

• For a fixed value k and dimension d, a GMM is the sum of k 
d-dimensional Gaussian distributions so that the overall
probability distribution looks like k mountains

• Each mountain corresponds to a different cluster

• Different mountains can have different peak heights

• Different mountains can have different ellipse shapes
(captures "covariance" information)

(We've been
looking at d = 2)

Example: 1D GMM with 2 Clusters

What do you think this looks like?

Cluster 1 Cluster 2

Probability of generating a
point from cluster 1 = 0.5

Probability of generating a
point from cluster 2 = 0.5

Gaussian mean = −5
Gaussian std dev = 1

Gaussian mean = 5
Gaussian std dev = 1

Example: 1D GMM with 2 Clusters

Cluster 1 Cluster 2

Probability of generating a
point from cluster 1 = 0.5

Probability of generating a
point from cluster 2 = 0.5

Gaussian mean = −5
Gaussian std dev = 1

Gaussian mean = 5
Gaussian std dev = 1

Example: 1D GMM with 2 Clusters

What do you think this looks like?

Cluster 1 Cluster 2

Probability of generating a
point from cluster 1 = 0.7

Probability of generating a
point from cluster 2 = 0.3

Gaussian mean = −5
Gaussian std dev = 1

Gaussian mean = 5
Gaussian std dev = 1

Example: 1D GMM with 2 Clusters

Cluster 1 Cluster 2

Probability of generating a
point from cluster 1 = 0.7

Probability of generating a
point from cluster 2 = 0.3

Gaussian mean = −5
Gaussian std dev = 1

Gaussian mean = 5
Gaussian std dev = 1

Example: 1D GMM with 2 Clusters

Cluster 1 Cluster 2

Probability of generating a
point from cluster 1 = 0.7

Probability of generating a
point from cluster 2 = 0.3

Gaussian mean = −5
Gaussian std dev = 1

Gaussian mean = 5
Gaussian std dev = 1

How to generate 1D points from this GMM:
1. Flip biased coin (with probability of heads 0.7)
2. If heads: sample 1 point from Gaussian mean -5, std dev 1
 If tails: sample 1 point from Gaussian mean 5, std dev 1

Example: 1D GMM with 2 Clusters

Cluster 1 Cluster 2

Probability of generating a
point from cluster 1 = 𝜋1

Probability of generating a
point from cluster 2 = 𝜋2

Gaussian mean = 𝜇1

Gaussian std dev = 𝜎1

Gaussian mean = 𝜇2

Gaussian std dev = 𝜎2

How to generate 1D points from this GMM:
1. Flip biased coin (with probability of heads 𝜋1)
2. If heads: sample 1 point from Gaussian mean 𝜇1, std dev 𝜎1

 If tails: sample 1 point from Gaussian mean 𝜇2, std dev 𝜎2

Example: 1D GMM with k Clusters

Cluster 1 Cluster k

Probability of generating a
point from cluster 1 = 𝜋1

Probability of generating a
point from cluster k = 𝜋k

Gaussian mean = 𝜇1

Gaussian std dev = 𝜎1

Gaussian mean = 𝜇k
Gaussian std dev = 𝜎k

How to generate 1D points from this GMM:
1. Flip biased k-sided coin (the sides have probabilities 𝜋1, …, 𝜋k)
2. Let Z be the side that we got (it is some value 1, …, k)
3. Sample 1 point from Gaussian mean 𝜇Z, std dev 𝜎Z

…

